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ABSTRACT 

The purpose of this paper is to investigate the Neimark-Sacker bifurcation in delayed logistic map.                       

In Neimark-Sacker bifurcation, the fixed point gets converted to a unit circle. In case of our considered map, we observed 

mode locked state near Neimark-Sacker bifurcation point. Using the analytical technique of Normal form, we have 

determined the mode locked state in the vicinity of the NS bifurcation point. We have also used numerical tools like final 

state diagram, Lyapunov exponent, phase portrait and time series plot to establish the transition from periodic to 

quasiperiodic through mode locked state and finally to chaotic state. 

KEYWORDS: Bifurcation, Neimark, Sacker Bifurcation, Normal Form, Quasiperiodic and Mode, Locked States, Limit 

Cycle 

1. INTRODUCTION 

The delayed Logistic map                                      (1) 

Where   is intrinsic growth rate, is one of the simplest population models in nonlinear dynamical system.         

This map was first proposed by Maynard Smith [33]. Several authors (Aronson et al [2], Guckenheimer [9], Hale and 

Kocak [10], Kuznetsov [16], Pounder and Rogers [24], J. C. Sprott [34]) investigated the complex dynamics showed by 

this map.  

Any qualitative change of dynamical behaviour of a system due to variation of a parameter is called bifurcation. 

For high dimensional discrete time maps, the most probable route to chaos from a fixed point is via at least one      

Neimark-Sacker (NS) bifurcation followed by persistent zero Lyavnuov exponent signifying quasi periodic state and 

finally a bifurcation into chaos [1]. Orbits that are not periodic and have the zero Lyapunov exponents are said to be 

quasiperiodic [5, 7, 8, 12, 28, 36]. The NS bifurcation occurs for a discrete system depending on parameter, with a fixed 

point whose Jacobian has a pair of complex conjugate eigenvalues which cross the unit circle transversally. The NSB 

ifurcation for map is equivalent to the Hopf bifurcation for differential equation [26, 27, 35, 41]. In the case of a 

supercritical NS bifurcation, a stable focus loses its stability as a parameter is varied with the consequent birth of a stable 

cycle or quasi-cycle which is known as closed invariant curve. In the case of a subcritical NS bifurcation, a stable focus 

enclosed by an unstable closed curve loses its stability with the consequent disappearance of the closed invariant curve as a 

parameter is varied. 

In 1971, Rullle and Takens [30] first proposed the quasi-periodic scenario. It is observed that in both the cases of 

NS bifurcation for maps and Hopf bifurcation for flows quasi periodic scenario come into picture. Hopf bifurcation in fact 

is related to the birth and death of limit cycles in a system. The existence of the limit cycles can be observed in fluid 

dynamics where vortex structures appear [19, 32]. The theory underlying the quasiperiodic route to chaos tells us only that 

this scenario may lead to chaotic behaviour. In 1978, Newhouse, Rulle, and Takens [23] proved more rigorously in case of 
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flows that if the state space trajectories of a system are confined to a three dimensional torus then even a small perturbation 

of the motion due to external noise, for example, will “destroy” the motion on the torus and lead to chaos and a strange 

attractor.  

The behaviour of orbits near a NS bifurcation [39] reveals many interesting features about the motion of particles 

in complex systems. Fixed-point solutions are transformed into quasiperiodic states or limit cycles after NS bifurcation.     

In other words, particles starting in a steady state (or even a mode-locked or synchronized state) end up moving in cycles 

around one or more centres. Such trans formation are observed, for example, when vortex structures appear in fluid 

dynamics [19,32], in the solutions of multi-agent models of biological swarming [18], in the nonlinear beam oscillations 

excited by lateral force in sound and vibration physics [3], in the pattern formation and oscillations in a system of           

self-regulating cells in neural science [29], the collapse of predator populations in biology [22] and in monetary                

economics [4].  

Hutchinson [1948] [13] appears to be the first ecologist to investigate the role of explicit delays in ecological 

models. He considered the delay differential logistic equation 
     

  
                     with time delay T. Here, it is 

assumed that the amount of resources available at time t will depend on the density of the species at an earlier time by a 

delay of T which is in contrasts with the usual logistic differential equation. In this paper, we will examine a discrete 

analogue of Huthinson's equation that was introduced by Maynard Smith [33] which seems realistic for the following 

reason: 

It is possible that the reproductive rate   may depend not only on the population density at the time, but on the 

population density in the past. For example, the reproduction of an herbivorous species will depend on the vegetation, 

which may in turn depend on how much of the vegetation was eaten by herbivores in the previous year. To gain some idea 

of the effect of such a delay in the effects of population density on its own increase, a much over-simplified example will 

be considered. It will be assumed that   depends only on the population density in the previous year, and neither on the 

immediate density nor on the density in earlier years. 

In modelling seasonally breeding populations whose generations do not overlap, it suffices to keep track of the 

population once every generation. In such a situation, one can describe the change in the population with a difference 

equation of the form   

          .  

Where    is the population size at the n-th generation and   is the reproductive rate. Now, for the simplified case 

mentioned above, we assumes the form  

              

for reproductive rate to arrive at the difference equation  

                 .  

This equation is almost like the famous logistic map except that the factor regulating the population growth 

contains a time delay of one generation. To follow the fate of a population, the density of the first two generations must be 

known. Here the parameter   is called the intrinsic growth rate. 

Now, if we introduce          
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Then the above difference equation can be equivalently written as 

                 

                       (2) 

2. NEIMARK-SACKER (NS) BIFURCATION 

Let   be a two dimensional map from      . The NS bifurcation occurs if the Jacobian matrix   of the 

linearised system of the map   have a complex pair of eigenvalues       so that the following conditions are                       

satisfied [21, 9, 31] 

                                               (3) 

     
         for                                       (4) 

 
 

  
                                              (5) 

Where     is the bifurcation parameter calculated at the bifurcation point, and   is a constant. 

The conditions for NS bifurcation were first derived independently by Neimark in 1959 [21], Sacker in 1964 [31] 

and by Ruelle and Takens in 1971 [30]. Land ford in 1973 [17] includes the condition     . A modification to deal with 

this case may be found in Iooss [15] who gives more precise details of the differentiability conditions required and the 

regularity of the bifurcating circles.   

3. DYNAMICS OF THE MAP 

Dynamics of a map gives us the glimpse of its fixed points, periodic attractors and so on. Below we have 

discussed some of the salient features of the delayed logistic map. 

The fixed points of the Delayed Logistic map are given by              

i.e.,                      

The fixed points are at              
 

 
   

 

 
  

As the fixed point (0, 0) is parameter independent we can conclude that it exists for all values of the parameter.  

For    , the non-trivial fixed point would be    
 

 
   

 

 
  .  

Now, the Jacobian of the map is,   
         

  
  

The Jacobian matrix calculated at the first fixed point (0, 0) is   
  
  

  and which has the eigenvalues 0 and  . 

So, from the criterion of stability of a fixed point we conclude that the origin is asymptotically stable if       

and unstable if    . 

Also, the Jacobian matrix calculated at the other fixed point    
 

 
   

 

 
   is  

    
  

  which has the 

eigenvalues      
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So, the fixed point    
 

 
   

 

 
  is asymptotically stable if     

 

 
 and the eigenvalues are complex 

conjugate if   
 

 
 and for discussion about the map for those values of   we write 

     
 

 
  

 

 
     

 

 
     

 

 
              (6) 

In polar form these can be written as                 where               

                 and
 

  
       

 

       
 

The N Sbifurcation occurs under the condition             leads to    . 

and 
 

  
       

 

 
                   (7) 

showing that the NS bifurcation occurs in case of our considered map at    . 

4. NORMAL FORM 

The normal form of a bifurcation is a simplified system of equations that approximate the dynamical system in the 

vicinity of a bifurcation point. Application of the method of normal form for investigation of different complex systems can 

be found in [6, 25, 26, 38]. It describes the local property of complex systems near bifurcation points. Any bifurcation has 

the same normal form for all physical models though the coefficients of the normal form change from model to model.      

In NS bifurcation, it can be achieved by using the method described as follows: 

Normal forms are derived on the central manifold [9,39]. To translate the coordinates       of the dynamical 

system (1) to the central manifold coordinates      , we use the following transformation  

 
 
 
    

    
    

                (8) 

Where (     ) is the fixed point and   is a     transformation matrix. The column of   are the eigenvectors 

associated to the eigenvalues  , calculated from the Jacobian matrix of the original system. In fact, the above 

transformation translates the bifurcating equilibrium point to the origin and brings the linear part into the normal form.  

Substituting       and         the linear and nonlinear part of the dynamical system can be written in the form  

 
 
 
    

               
              

  
 
 
   

      
      

  ,            (9) 

where the constant         
     

      
,           (10) 

Is calculated at the bifurcation point. The first and the second term in the right hand side of the equation (9) gives 

the linear and the nonlinear parts respectively. 

Using the transformation        in the complex plane, it is suitable to write equation (9) as                    

                      .                                                                                                                                      (11) 

This expression is exactly the dynamical system written in the complex plane and with the bifurcation point 

located at the origin.  

Expanding                    in a Taylor expansion in   and   , we get 
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                 (12) 

where,   

 
  
 

 

 
                                          (13) 

 
  
 

 

 
                                 (14) 

 
  
 

 

 
                                          (15) 

 
  
 

 

  
                                                      (16) 

Now considering the trans formation                 , the equation (12) is brought to its simplest form 

which is called the normal form in the complex plane: 

                               (17) 

Where   being a complex number determined by 

   
        

 

   
 
  
 
  
 

     
 

    
  
 

      
 

     
    

  
            (18) 

Substituting        and        , in the r.h.s of the equation (17) we get 

                         
              (19) 

The radial and angular part of normal form given by (19) can be written as  

                      
              (20) 

             
              (21) 

Where c, d e and s are the coefficients of the normal form. The coefficient   is determined using equation (5). 

Comparing (20) and (21) with (19), we get 

             and                       (22) 

The properties and stability of solutions near the NS bifurcation depends on the constants            .               

The stability of a limit cycle is determined by  . If    , then the limit cycle is stable where as if     the limit cycle is 

unstable. In the first case the bifurcation is called supercritical and in the second case the bifurcation is called subcritical. 

A detailed study of normal form is found in [9, 14, 15, 16, 20, 37, 38, 39]. 

5. FINDING ‘E’ AND ‘S’ FOR OUR MAP 

The complex conjugates eigenvalues for the delayed logistic map are given by 

  
 

 
     

 

 
              (23) 

   
 

 
     

 

 
              (24) 
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The eigenvectors corresponding to eigenvalues   and    (these are calculated on the NS line    ) are, 

respectively given by   
 

 
 

  

 

 
  and   

 

 
 

  

 

 
 .  

To separate the linear part from the nonlinear part, as in equation (6), a new basis is introduced which allows the 

transformation  

                     , where       
 

 
 for     

Using the transformation matrix whose columns are the eigenvectors: 

 
 
     

 
 
 , where     

  

 

 

 

  
                           (25) 

 
 
 
      

 
  , where       

 

  
 

 

  

  
            (26) 

Under the transformation  
  

 
   

 

  

     

The system (2) transform into the normal form:  

  
 
 
   

 

 
 
  

 

  

 

 

 

  
 
 
   

      
      

  

Where               
 

  
    and           

With these function, the coefficients     and    can be determined from (22) 

    
                                              

                 
          (27) 

   
                                                  

                 
         (28) 

Where          

In fact, the condition    , guarantees the existence of an invariant limit cycle above     [8, 10] which we have 

verified in our numerical simulations shown in the following figures [Figure 1]. 

 
       a                                                                                    b 

Figure 1: (a) Phase Portrait in Delayed Logistic Map for       , before the NS Bifurcation (b) Stable Invariant 

Curve in the Delayed Logistic Equation for       , after the NS Bifurcation with                   
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We have already mentioned that the NS bifurcation conditions are satisfied for the parameter value                 

We plotted the graph of (27) for the range          (shown in Figure 2) in the vicinity of the NS bifurcation point and 

found that the coefficient e is always negative for the above mentioned range. So, the limit cyclesare stable for the 

parameter range         .  

 

Figure 2: Coefficient   vs. Parameter   Plot 

The Local dynamics described by the normal forms (20) and (21) is very rich. It is possible, for example, to obtain 

information related to the radius of the limit cycle and the rotation number which is essential for determining whether the 

state is mode locked or quasiperiodic. Making            in Eq. (20), the radius of the limit cycle is determined by 

    
 

 
                    (29) 

Observe that r is always real because the limit cycles exist only for           and    . 

Therefore the radius of the invariant circle [11, 32] grows as        
   . 

Substituting   from Eq. (29) in Eq. (21), the rotation number on the limit cycle can be obtained from   

            ,              (30) 

Where  

             
  

 
                  (31) 

For points on the NS line   (     ), the radius   is zero. 

So, from (31), we have             , 

Where   is obtain from Eq. (10) 

         
   

   
               with   

 

 
 

Thus we have                               (32) 

It can be observed from (30), that for rational values of  
      

  
  points on the limit cycle will be repeated whereas 

for irrational values of 
      

  
, points on the limit cycle will never repeat. Therefore, two cases have to be considered, 

depending on the ratio 
      

  
  [12, 16, 39].  

 Mode-Locking: If 
      

  
 

 

 
 is a rational number, a periodic regime is obtained. In this case a mode-locked or 

synchronized state is obtained, with n being the period of the orbit and m its multiplicity. 
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 Quasiperiodicity: If 
      

  
 is an irrational number, the motion is quasiperiodic. 

The parameter value at which the mode- locked states occur can be obtained analytically by choosing a period n 

and multiplicity m and substituting  
      

  
 

 

 
in the relation (34), simplification of  

Which leads to        
   

 
                            (33) 

Using (33) and (27) we get the period-6 mode-locked state for the parameter value    . Time series plot of the 

system also make it clear graphically. In the following figures, we have plotted the time series for the parameter values 

    and       respectively.  Though in the first case, period 6 behaviour is visually clear, we fail to get any pattern in 

the second case. 

 
(a)                                                                       (b) 

Figure 3: Time Series Plot for the Parameter Value (a)      and (b)        

 

6. NUMERICAL DISCUSSIONS 

Bifurcation diagram is primarily a tool to study the long term behaviour of a map which gives all information 

contained in it with the variation of the control parameter. We study the behaviour of the delayed logistic map at a glance 

with the help of bifurcation diagram.  

Lyapunov exponent is a method of quantifying chaotic behaviour which play very important role in the 

description of the dynamics of a map. In the bifurcation diagram map like delayed logistic, which exhibits quasiperiodic 

and chaotic behaviour, it is difficult to distinguish chaos from quasiperiodic state. In such cases, we can draw our 

conclusion by plotting the Lyapunov exponents. We have used the ‘pull back’ method [40] to find the Lyapunov exponent 

during our investigation. If the maximum Lyapunov exponent is zero in certain range of the parameter, then we can 

ascertain quasiperiodic state for that range. Figure 4 shows (a) bifurcation diagram and (b) behaviour of the maximal 

Lyapunov exponent (   for different ranges of the parameter where both are shown simultaneously. It shows that up to the 

parameter value    , the Lyapunov exponent is negative which indicates periodic behaviour. This fact is supported by 

the bifurcation diagram of the map. In this range, the bifurcation diagram consists of a single point against each parameter 

value which is the final state of the map for that particular parameter value. Occurrence of NS bifurcation which we 

analytically established earlier is supported by zero Lyapunov exponent in our figure. As the parameter is increased further 

away from     where the NS bifurcation occurred, the dynamics of the delayed logistic map is remarkably intricate. By 

enlarging various parts of the bifurcation diagram we can explore some of this bewildering complexity within it. We have 

adopted this technique in section 7 for discussion of the 1: 6 mode locked state. 

The figure further shows that the maximum Lyapunov exponent for           is     In particular, our 

calculated value for        is               and for        is             . So, we can conclude that the 
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system shows quasiperiodic behaviour within this parameter range. After the parameter crosses the value         both 

the Lyapunov exponent become negative up to       indicating regular behaviour for this range of parameter values.     

In particular we calculated the Lyapunov exponent for        and found it to be             . The bifurcation 

diagram supports this conclusion. Ultimately when the parameter crosses the value        the maximum Lyapunov 

exponent is found to be positive indicating chaotic behaviour. 

The arrow in Figure 4(b) indicates the range of quasiperiodic motion which begins at the NS bifurcation point 

where a fixed-point solution is transformed into a quasiperiodic motion. The quasiperiodic motion continues with the 

increase of the parameter value   and eventually it either goes to chaos       or it continues with the existing state until 

the attractor gets destroyed in a boundary crisis [27, 36]. In the quasiperiodic region the bifurcation diagram is filled out 

like the chaotic region making it difficult to draw conclusions about the state depending solely on the bifurcation diagram. 

At this confusing state we must take help of the values of the Lyapunov exponent which is zero for quasiperiodic state and 

positive for chaotic state. For all the figures the trajectories were initialised at                  .The final state diagram 

even in the case of quasiperiodic state and mode-locked state in the neighbourhood of the NS bifurcation point looks 

similar. We can distinguish their differences by magnifying the final state diagram in the neighbourhood of the NS 

bifurcation point. So, we have drawn the figure in 4(c) which is the blown up portion within the square shown in                 

figures 4(a).We have discussed the case mentioned below following the above technique. 

Mode-Locked State for     

From the bifurcation diagram and the Lyapunov exponent which are shown in figure 4(a) and 4(b) we can 

conclude that the quasiperiodic state continues from         to          approximately. After the quasiperiodic state 

we have noticed a periodic state up to       and then the attractor goes to chaos before it gets destroyed in a boundary 

crisis near        ... The measures of the Lyapunov exponents in this case further shows that the system is strongly 

chaotic. The figure 4(c) which is the magnification of the portion within the square in 4(a) which is in the neighbourhood 

of the NS bifurcation point shows that it meets with the 1: 6 mode-locked state. 

 

Figure 4: (a) Bifurcation Diagram and (b) Maximal Lyapunov Exponent 
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Figure 4: (c) Blown up Portion of the Bifurcation Diagram inside the Square 

The following figures 4(d), 4(e) which are the phase portraits just before and after the NS bifurcation point 

justifies our claim. We have drawn the figures with the initial point (x = 0.5, y = 0.5) and allowing the attractor 10000000 

number of iterations and then neglecting 9990000 initial iterations. For the figure 4(d) the parameter value   was taken to 

be 1.99 which is just prior to the NS bifurcation point and for the figure 4(e) the parameter value a was taken to be 

2.00000001 which is just after the NS bifurcation.  The single point in the figure 4(d) ascertains that the system is regular 

with period 1 and the 6 points in the figure 4(e) shows that the system attains the mode-locked state 1: 6.   

 
  (d)                                                                                (e) 

Figure 4: (d) Phase Portrait at        Just before the NS Bifurcation Point (e) Phase-Portrait 

at              Just after the NS Bifurcation Point 

 

Evolution of the Attractor at 1: 6 Mode-Locked State 

From the earlier discussions it is quite clear that the NS bifurcation is marked by creation of limit cycles which 

keeps on growing in radius and ultimately gets deformed when the chaotic state is reached. The basic difference which 

takes place in case of mode-locked state and the quasiperiodic state in the immediate vicinity of the NS bifurcation point is 

that in the earlier case the state of the system changes from period one to two or more (depending upon the mode-locked 

state) and then it forms a stable limit cycle whereas in the quasiperiodic case the limit cycle gets immediately created just 

after crossing the NS bifurcation point. In the following diagrams we have shown the evolution of the limit cycles which is 

created after the NS bifurcation point in case of 1: 6 mode-locked state. The implication of the first two figures for 

         and            were already made clear in describing the figures 4(d) and 4(e). The                                         

figures for              shows the existence of limit cycles signifying quasiperiodic state and the last figure for  

       shows the deformation of the limit cycle which shows that chaos creeps in to the system. 



Neimark-Sacker Bifurcation in Delayed Logistic Map                                                                                                                                      29 

 

Figure 5: Phase Portrait for the Parameter Value                              

In fact, the limit cycles which come in to the picture grows larger with increasing radius                                         

(shown in figure 6(a) and 6(b)) with the increase in the parameter   until they get deformed when the chaotic state is 

reached. 

 

Figure 6: (a) Radius of the Limit Cycle Obtained Analytically is Plotted with Respect to  .  

(b)Four Trajectories in the Phase Space With                       

 

Below, we have compared the analytical radius obtained from Eq. (29) of the limit cycles with numerical radius. 

The numerical radius of a limit cycle is an average radius over all points of trajectory. Figure 7 shows a comparison 

between the radius of the limit cycle calculated from Eq. (29) (black line) with the radius obtained bynumerical simulation 

(blue line). 

 

Figure 7: Radius of the Limit Cycle Obtained Analytically (Black Line) and Numerically (Blue Line) 

Both curves are plotted as a function of the bifurcation parameter  . The agreement between numerical and 



30                                                                                                               Hemanta K R. Sarmah, Mridul Chandra Das & Tapan K R. Baishya 

analytical result decreases very fast. The reason of this disagreement is that - far away from the NS bifurcation point, when 

the chaotic region is approached, limit cycles get totally deformed and the numerical calculation of the limit cycle radius 

gets worse.  

7. OBTAINING     FOR     

From the nonlinear terms              
 

  
    and          we have the following  

     ,       ,      
 

  
 

     ,      ,       

Thus, we get     
 

 
                                 

  

 
 

 

 
 

     
 

 
                        

 

  
 

     
 

 
                                 

  

 
 

 

 
 

Now, for     we get,   
     

 
 ,      

     

 
 

Substituting the value of     ,    ,    ,   ,     in (22) which is given by 

      
         

   
       

     
 

      
 

      
 

     
        

We get     
 

 
   

Thus, the bifurcation is supercritical implying existence of an attracting invariant closed curve surrounding  
 

 
 
 

 
  

for    .   

The above fact can be verified with the help of phase portraits of the delayed logistic map for       ,    , 2.01 

and 2.1 which we have shown below. When    , the origin is asymptotically stable and all iterates starting within its 

domain of attraction spiral in to it. When    , the origin is unstable and all iterates either spiral in or spiral out to a 

smooth closed invariant curve enclosing the origin depending on the choice of the initial point.   

 

Figure 8: Phase Portrait in Delayed Logistic Map for                , 2.1 
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8. CONCLUSIONS 

The technique of normal form gives good results near the NS bifurcation point. Using normal form we can 

determine whether the motion is quasiperiodic or mode-locked and in this paper we have given a numerical simulation for 

the delayed logistic map which is in conformity with the results obtained from the normal form. After the NS bifurcation, a 

fixed point solution is transformed into a mode-locked or synchronized state. For very specific conditions, the fixed point 

solution is transformed into a mode-locked or synchronised state which occurs in the delayed logistic map. Our numerical 

simulation has shown that the delayed logistic map exhibits a Neimark-Sacker bifurcation where a 1:6 mode-locked state 

occurs at the parameter value    . 
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